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A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil
transition in biopolymers. This model is shown to provide the same thermophysical properties of the original
Zimm-Bragg model and it allows a very convenient framework to compute statistical quantities. Physical
origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with
an external field. However, the dependence on temperature of the reduced external field turns out to differ from
the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite
the exact mapping connecting them. We discuss how this point has been frequently overlooked in the recent
literature.
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Statistical descriptions of polypeptide chain conforma-
tions involve important coarse-graining on the level of the
C� atoms. Due to planarity of the amide group, torsional
angles of successive repeated units can be considered inde-
pendent, and a pair of �i, �i angles can be associated with
each repeated unit �see Fig. 1�a��. Introduction of virtual
bonds, connecting neighboring C�’s, strongly simplifies the
description. Thus the configuration of a polypeptide chain
can be described with the array of bond vectors �l�i�, i
=1. . .N−1, related to its backbone, and a new variable �i
representing the state of the particular ith units �Fig. 1�b��
�1,2�. Within the framework of the helix-coil transition
theory, this variable could have different values in the helix
and coil states, taken according to some particular prescrip-
tion. Since Doty and co-workers experimentally showed that
polypeptide chains in solution can be reversibly converted
from the random coil to �-helix conformations �3�, a number
of methods have been proposed to model the phenomenon
�4� ranging from highly sophisticated computer simulations
�5� to highly simplified spinlike models �6�. In the past few
decades significant advances have been made in computa-
tional capabilities of both computer hardware and software
thus enabling investigations to an unprecedented level of
complexity. At the same time, interpretations of results from
single-molecule techniques, such as stretching with optical
tweezers �7�, have largely relied on applications of classical
spin models �8�. In addition these spin approaches remain
attractive for describing folding of helical proteins �9� and
influences of solvent on secondary structure formation and
stability �10�. Among these, the Zimm-Bragg �ZB� model

stands out for its success �11�. While very useful in interpret-
ing experimental results, the original ZB theory is far less
satisfactory from a theoretical point of view as it lacks a well
defined microscopic description, thus preventing a clear con-
nection with more sophisticated levels of theoretical descrip-
tion.
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FIG. 1. �Color online� A segment of a polypeptide chain in a
trans conformation is shown. Parallelograms indicate the plane of a
virtual peptide bond. �a� Diagramatic view of a polypeptide chain
segment where the main-chain atoms are represented as rigid pep-
tide units, linked by virtual bonds through the C� atoms. Each unit
has two degrees of freedom due to the rotation around the C�−C�
�torsional angle �� and N−C� �torsional angle �� bonds. R stands
for the amino acid residues, all other atoms have corresponding
chemical labels aside. �b� Coarse-grained representation of a
polypeptide chain: the configuration is described with the help of
fictitious vectors li

�, that depend on coordinates of two neighboring

C� atoms and bond angle �i=�−arccos
l�il�i+1

lili+1
, that depends on coor-

dinates of three carbons, and a pair of torsional angles �i, �i.
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It has been frequently stated in the literature, that the ZB
model can be described, at a microscopic level, by a one-
dimensional Ising model �see, e.g., Ref. �12� for recent rep-
resentative examples�. However, care must be exercised in
making this assertion. The aim of this short note is directed
toward formally addressing the actual equivalence of the ZB
and one-dimensional Ising models.

The comparative analysis will be performed by introduc-
ing a one-dimensional Potts-like spin model and demonstrat-
ing that it gives rise to the same thermodynamic properties as
the original ZB model. The Potts-like model is then mapped,
via an exact transformation, into a one-dimensional Ising-
like model with an external field. It is shown that due to the
temperature dependence in the external field, predicted ther-
mophysical properties are not equivalent to the standard one-
dimensional Ising model.

In its simplest formulation the ZB model is based on the
following combinatorial rules �11�. �1� Every repeated unit
exists in either the hydrogen-bonded �helical� or unbonded
�coil� state; �2� every unbonded repeated unit contributes a
statistical weight of unity to the partition function; �3� every
bonded repeated unit that follows another bonded repeated
unit, contributes a statistical weight, s; �4� every bonded re-
peated unit that follows two or more unbonded repeated
units, contributes a statistical weight of s� �in conjunction
with Rule 3, this defines ��; �5� every bonded repeated unit
that follows less than two unbonded repeated units, contrib-
utes a statistical weight of zero.

Note that s has the meaning of a statistical weight, and is
usually interpreted in terms of a free energy change s
=e−	�Ghelix−Gcoil� between the helix and coil states. Similar in-
terpretation can be given for � with the additional restriction
of being purely entropic in nature �unlike s which has both
enthalpic and entropic contributions� �13�. Using combinato-
rial techniques, the ZB model allows derivation of the ther-
modynamic properties of the system from the eigenvalues of
the following 2
2 matrix �11�,

MZB = � 1 1

�s s
� . �1�

The corresponding secular equation providing the eigenval-
ues is

�2 − ��s + 1� + s�1 − �� = 0, �2�

which defines the thermodynamics of the ZB model. Note
that the matrix in Eq. �1� is not symmetric. This contrasts
with the results obtained from the standard one-dimensional
Ising model with an external field, which is symmetric �14�.
As a result, eigenvalues, and hence the thermodynamics are
different in the two cases. We shall return to this point later
on where comparisons between the ZB model and one-
dimensional Ising model with a particular external field will
be discussed.

Our microscopic formulation of the ZB model is founded
on a Potts-like formulation akin to the more general model,
previously presented within a slightly different context �15�.
Assume that spin �i describing the state of the ith repeated
unit can take one of Q��2� values; �i=1 corresponding to

values of the torsional angles �i and �i from the helical
region of the Ramachandran map, while the other Q−1 iden-
tical values correspond to torsional angles from the coil re-
gion. As we shall see, the condition Q�2 plays a fundamen-
tal role as it accounts for the large degeneracy �and hence
entropy� of the coil state. The magnitude of Q can be iden-
tified with the ratio of the allowed region area versus helical
region area on a Ramachandran map. Although the formation
of one hydrogen bond fixes the values of three couples of
torsional angles �see, e.g., �15��, we simplify the model and
consider only a nearest-neighbor construction. The energy of
interaction is assumed to be different from zero when both �i
and �i+1 are equal to 1. The corresponding spin Hamiltonian
is

− 	H = 	J	
i=1

N


��i,1�
��i+1,1� , �3�

where 
’s are Kronecker symbols and 	=1 /�BT is the in-
verse thermal energy. Here and in the following, we consider
open boundary conditions with the N→� limit taken at the
end. We further remark that the Potts-like model defined in
Eq. �3� differs from the classical Potts model proposed by
Goldstein �16� for the helix-coil transition �a detailed com-
parison between the two models is interesting and will be
addressed in future work�.

The partition function Z can be obtained via standard
transfer matrix techniques �2,17�,

Z = 	
��i�

e−	H���i�� = 	
��i�



i=1

N

�M��i,�i+1
, �4�

where �M��i,�i+1
are the elements of the Q
Q matrix

M�Q 
 Q� =�
e	J 1 . . . 1

1 1 . . . 1

. . . . . . . . . . . .

1 1 . . . 1
� . �5�

From the structure of the matrix in Eq. �5�, it is clear that
there are only two linearly independent eigenvectors, so the
number of nontrivial eigenvalues � and the order of the char-
acteristic equation is also equal to two. This can be explicitly
verified as follows. Write the characteristic equation

M−I�
=0, I being the identity matrix. Successively subtract
the second row from the first row, third row from the second,
etc., until all rows have been accounted for. Similarly, suc-
cessively add column Q with column Q−1, Q−1 with Q
−2 etc., so as to obtain a final block diagonal determinant
with the characteristic equation,

�Q−2 
 det�e	J − 1 − � e	J − 1

1 Q − �
� = 0. �6�

Neglecting the Q−2 trivial eigenvalues, a simple change of
variables �=� /Q, �=Q−1, and s= �e	J−1� /Q yields
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det�s − � s

� 1 − �
� = �2 − ��s + 1� + s�1 − �� = 0, �7�

which exactly coincides with the characteristic equation for
the ZB model given in Eq. �2�. Therefore, the Hamiltonian in
Eq. �3� provides exactly the same thermodynamics of the ZB
model and, hence, can be considered equivalent to it. Next,
the relationship between the ZB and Ising models is exam-
ined. The partition function in Eq. �4� of the Hamiltonian in
Eq. �3� can be cast in the following form:

Z = 	
�1=1

Q

	
�2=1

Q

e	J
��1,1�
��2,1� 	
�3=1

Q

e	J
��2,1�
��3,1�

. . . 	
�N=1

Q

e	J
��N−1,1�
��N,1�. �8�

After each of the sums, a term 	mi=0,1
�mi ,
��i ,1�� can be
inserted, since it is equal to unity. Upon changing the sum-
mation order and tracing out over � variables, one immedi-
ately gets the partition function,

Z = 	
�mi�



i=1

N

exp�	Jmimi+1 + q�1 − mi�� = 	
�mi�

exp�− 	H� ,

�9�

where the Hamiltonian is given by

− 	Hzb = Kzb	
i

mimi+1 + �zb	
i

�1 − mi� . �10�

Here the coupling Kzb=	J represents the reduced energy of a
hydrogen bond and �zb=q=ln�Q−1� plays the role of a re-
duced chemical potential within a lattice gas formulation.
For comparison, the Hamiltonian of a one-dimensional Ising
model in a similar lattice gas formulation is given by

− 	HIsing = KIsing	
i

mimi+1 + �Ising	
i

�1 − mi� , �11�

where KIsing=	J=Kzb, and �Ising=	q. The last term on the
right in Eq. �11�, �Ising, is temperature dependent, whereas
the analogous term on the right in Eq. �10�, �zb, is not.
Herein constitutes a fundamental difference between the ZB
and one-dimensional Ising models.

Corroboration comes from considering the zeroes of the
partition functions �4� of the ZB model �as defined by the
Hamiltonian in Eq. �3�, or its equivalent Hamiltonian in Eq.
�10�� and comparing the zeros with those obtained for the
partition function for the one-dimensional Ising Hamiltonian
in Eq. �11�. The method of zeroes of partition functions is a
standard tool for identifying phase transitions in spin models
�18�. As the control variable is temperature, the zeroes must
be considered in the complex temperature plane, known as
the Fisher zeroes �19�. In the thermodynamic limit the point
where zeroes cross the real positive axis can be identified as
the transition point. We remark, that in the absence of long-
range interactions the helix-coil transition is not a true phase
transition even for infinite polymer lengths �N→��, and
hence, no crossing of the real axis should be expected. On
the other hand, recent numerical studies of Fisher zeroes for

helix-coil models with long-range interactions, and finite
chain lengths, strongly suggest a first order transition �20�.
For short-range interactions and infinite chains, such as the
case treated here, the distributions of Fisher zeroes are
clearly different and have been discussed by Poland and
Sheraga �4� for some limiting values of parameters. Their
calculation is repeated here within a more general framework
and results are compared with those obtained from the cor-
responding one-dimensional Ising model �19�. These differ-
ent scenarios are a direct consequence of the different tem-
perature dependence mentioned above. The Fisher zeros are
depicted in Fig. 2�a� in the Re s-Im s plane for different val-
ues of the � parameter. Here s= �e	J−1� / �eq−1� and �
=1 / �eq−1� are the most convenient variables to perform this
comparison. Poland and Sheraga in �4� have shown that at
limiting values of �, Fisher zeroes of the ZB model lie on the
unit circle, so do the edge zeroes. Expected scaling of the
edge zeroes with � was predicted to be Re�sedge�=1
−2� ; Im�sedge�=2�1/2�1−��1/2, so that the phase transition
limit is approached as � decreases, only reaching it in the
�→0 limit of infinite cooperativity. Within the microscopic
formulation given by Eq. �10�, we have performed a numeri-
cal check and confirmed the scaling exactly as above for the
vast range of � values. Thus, the real part of the edge zero
indicates the transition temperature and the imaginary part
can be considered as a measure of the cooperativity or of
correlations present in the system at the transition point �21�.
Edge zeroes of the Ising model �Fig. 2�b��, as given by Eq.
�11�, do not lie on the circle, clearly indicating the difference
in scaling with � values. Both the cooperativities and the
stabilities clearly differ in the two cases. While the transition
point for the ZB model is close to s=1, it lies in the vicinity
of s=0 for the Ising model, as shown in Fig. 2�b�. As previ-
ously anticipated, a numerical simulation study of a three-
dimensional model with long-range interactions have shown
that Fisher zeroes occupy the same spherical region of unit
radius, as in Fig. 2�a�, but nearly cross the positive real axis
unlike the short-ranged ZB counterpart �20�.

In conclusion, we have argued that a proper microscopic
description of the Zimm-Bragg model is not a standard one-
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FIG. 2. �Color online� Temperature �Fisher� zeros in terms of
the s= �e	J−1� / �eq−1� at different values of parameter �=1 /Q
= �eq−1�−1 for: �a� Zimm-Bragg model given by Eq. �3� and �b�
Ising-like model, given by Eq. �11�. As obvious, Fisher zeroes for
the �=1 /2 case are similar for both models, since it corresponds to
the model with �ising=�zb=0 field.
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dimensional Ising model, as often tacitly assumed in the re-
cent literature, but rather a one-dimensional Potts-like model.
This can indeed be shown to be equivalent to an Ising-like
one-dimensional model having however different properties
with respect to the usual Ising counterpart, as made evident
from a comparative Fisher zeroes analysis.
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